
 

1 
 

COURSE DESCRIPTION CARD - SYLLABUS 

Course name  

Software Evolution and Maintenance 

Course 

Field of study 

Computing 

Area of study (specialization) 
Software Engineering 

Level of study  
Second-cycle studies 
Form of study 

full-time 

Year/Semester 

1/2 

Profile of study  

general academic 

Course offered in 
English 

Requirements  

elective

 Number of hours 

Lecture 

30 

Tutorials 

      

Laboratory classes 

30 

Projects/seminars 

15 

Other (e.g. online) 

      

Number of credit points 

6 

Lecturers

Responsible for the course/lecturer: 

dr hab. inż. Bartosz Walter 

email: bartosz.walter@put.poznan.pl 

tel. +48 61 655 2980 

Faculty of Computing and Telecommunications 

ul. Piotrowo 2, 60-965 Poznań

Responsible for the course/lecturer: 

     

 Prerequisites 

Student should have knowledge concerning software development processes and models, and basic 

skills in programming (at least in reading the code). They should also be capable of continuous learning 

and knowledge acquisition from selected sources, as well as express the readiness for collaborating in 

small teams. 

Course objective 

The objective for this course is to provide the students with knowledge on the processes of evolution of 

software systems, the types of evolutionary changes, and reacting to the evolution by planned and 

conscious maintenance activities.  Students, upon completing the course, are expected to evaluate 

maintainability of a software system, apply changes and verify their correctness, as well as perform code 

reviews and apply refactorings. 



 

2 
 

Course-related learning outcomes  

Knowledge 

1. Students posesses well-grounded knowledge on the software system's life cycle. 

2. Student posessess knowledge on selected methods, languages and notations used for developing 

software. 

3. Student posesses knowledge on design patterns and best practices in software design 

4. Student knows selected metrics and measurement methods for software quality characteristics 

(concerning the size, complexity, etc.) 

Skills 

1. Student can re-design, fix or update a software system. 

2. Student can evaluate the design quality and analyze its impact on a software system. 

Social competences 

1. Student can effectively collaborate in small teams. 

2. Student enhances their knowledge, based on commonly available source, making a conscious 

selection of them. 

Methods for verifying learning outcomes and assessment criteria 

Learning outcomes presented above are verified as follows: 

The knowledge presented during the lecture will be verified two-fold: (i) by solving during the lectures in 

small teams two design case studies and discussing their pros and cons, and (ii) during the final 

examination (multilple-choice test that verifies the understading of the lectures). The two forms would 

be weighted 30:70, and the passing score is 50%. The list of examination problems will be provided 

during the last lecture within the course.  

The skills acquired during laboratory classes will be verified by 3-4 group assignments, concerning the 

issues presented and discussed during the classes. The passing score is also 50%. 

Programme content 

1. Lecture: Overview of models of software evolution. Measurement and metrics for evolution and 

maintenance of software artifacts. Types of maintenance activities. Approaches to maintainability 

evaluation. Methods of restructuring and refactoring legacy systems. Observation and analysis of 

changes in software repositories. 

2. Laboratory classes: Observation of software evolution. Collecting and analyzing evolution metrics. 

Flaws in software maintenance. Maintaining a software system in an iterative software development 

lifecycle. Techniques of refactoring.  

Teaching methods 



 

3 
 

1. Lecture: multimedia presentation, discussion 

2. Laboratory classes: presentation supported by provided examples, programming the software and 

design assignments in groups, discussion  

Bibliography 

Basic 

1. T. Mens, S. Demeyer: Software Evolution. Springer Science and Business Media, 2008 

2. R. C. Martin: Czysty kod. Podręcznik dobrego programisty. Helion, 2010 

3. J. Visser et al.: Building Maintainable SOftware. Java Edition. Ten Guidelines for Future-Proof Code. 

O'Reilly Media, 2016. 

 

Additional  

1. M. Fowler: Refactoring. Improving the design of existing code. Addison-Wesley, 2018. 

2. Priyadarshi Tripathy, Kshirasagar Naik: Software evolution and maintenance. A practitioner's 

approach. Addison Wiley, 2015 

Breakdown of average student's workload 

 Hours ECTS 

Total workload 150 6,0 

Classes requiring direct contact with the teacher 75 3,0 

Student's own work (literature studies, preparation for 
laboratory classes/tutorials, preparation for tests/exam, project 
preparation) 1 

75 3,0 

 

                                                      
1
 delete or add other activities as appropriate 


